3.4 \(\int \sqrt{b x+c x^2} \, dx\)

Optimal. Leaf size=60 \[ \frac{(b+2 c x) \sqrt{b x+c x^2}}{4 c}-\frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{4 c^{3/2}} \]

[Out]

((b + 2*c*x)*Sqrt[b*x + c*x^2])/(4*c) - (b^2*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/(4*c^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0136197, antiderivative size = 60, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.231, Rules used = {612, 620, 206} \[ \frac{(b+2 c x) \sqrt{b x+c x^2}}{4 c}-\frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x + c*x^2],x]

[Out]

((b + 2*c*x)*Sqrt[b*x + c*x^2])/(4*c) - (b^2*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/(4*c^(3/2))

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{b x+c x^2} \, dx &=\frac{(b+2 c x) \sqrt{b x+c x^2}}{4 c}-\frac{b^2 \int \frac{1}{\sqrt{b x+c x^2}} \, dx}{8 c}\\ &=\frac{(b+2 c x) \sqrt{b x+c x^2}}{4 c}-\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{b x+c x^2}}\right )}{4 c}\\ &=\frac{(b+2 c x) \sqrt{b x+c x^2}}{4 c}-\frac{b^2 \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{4 c^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0999567, size = 74, normalized size = 1.23 \[ \frac{\sqrt{x (b+c x)} \left (\sqrt{c} (b+2 c x)-\frac{b^{3/2} \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{b}}\right )}{\sqrt{x} \sqrt{\frac{c x}{b}+1}}\right )}{4 c^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x + c*x^2],x]

[Out]

(Sqrt[x*(b + c*x)]*(Sqrt[c]*(b + 2*c*x) - (b^(3/2)*ArcSinh[(Sqrt[c]*Sqrt[x])/Sqrt[b]])/(Sqrt[x]*Sqrt[1 + (c*x)
/b])))/(4*c^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.047, size = 56, normalized size = 0.9 \begin{align*}{\frac{2\,cx+b}{4\,c}\sqrt{c{x}^{2}+bx}}-{\frac{{b}^{2}}{8}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx} \right ){c}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^(1/2),x)

[Out]

1/4*(2*c*x+b)*(c*x^2+b*x)^(1/2)/c-1/8*b^2/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.048, size = 285, normalized size = 4.75 \begin{align*} \left [\frac{b^{2} \sqrt{c} \log \left (2 \, c x + b - 2 \, \sqrt{c x^{2} + b x} \sqrt{c}\right ) + 2 \,{\left (2 \, c^{2} x + b c\right )} \sqrt{c x^{2} + b x}}{8 \, c^{2}}, \frac{b^{2} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{2} + b x} \sqrt{-c}}{c x}\right ) +{\left (2 \, c^{2} x + b c\right )} \sqrt{c x^{2} + b x}}{4 \, c^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(b^2*sqrt(c)*log(2*c*x + b - 2*sqrt(c*x^2 + b*x)*sqrt(c)) + 2*(2*c^2*x + b*c)*sqrt(c*x^2 + b*x))/c^2, 1/4
*(b^2*sqrt(-c)*arctan(sqrt(c*x^2 + b*x)*sqrt(-c)/(c*x)) + (2*c^2*x + b*c)*sqrt(c*x^2 + b*x))/c^2]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b x + c x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**(1/2),x)

[Out]

Integral(sqrt(b*x + c*x**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.40028, size = 82, normalized size = 1.37 \begin{align*} \frac{1}{4} \, \sqrt{c x^{2} + b x}{\left (2 \, x + \frac{b}{c}\right )} + \frac{b^{2} \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x}\right )} \sqrt{c} - b \right |}\right )}{8 \, c^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(c*x^2 + b*x)*(2*x + b/c) + 1/8*b^2*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x))*sqrt(c) - b))/c^(3/2)